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Abstract

The main objective of the present work is to provide a general framework for constitutive laws based on the mi-
croplane theory applicable to any kind of rheological behavior. Therefore, a thermodynamically consistent concept of
deriving microplane based constitutive equations is presented. Microscopic constitutive laws are formulated on char-
acteristic material planes, the so-called microplanes, resulting in an overall anisotropic macroscopic material charac-
terization. The microscopic strain components of one plane are derived by the projection of the macroscopic strain
tensor, leading to a kinematically constrained model. As proposed in the first part of this paper, the introduction of
individual potentials on each microplane yields thermodynamically consistent microplane laws. They can be related to
the macroscopic material description through an integration over the hemisphere. The microplane laws are chosen such
that the macroscopic version of the Clausius—Duhem inequality is satisfied. This generic concept will be applied to the
classical models of elasticity, elasto-damage and elasto-plasticity. The results are documented by the analysis of
pointwise texture evolution for the model problems of uniaxial tension and simple shear. © 2001 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

For a wide class of materials, the assumption of isotropic material response yields sufficiently accurate
results. Nevertheless, for heterogenecous materials, e.g. concrete or other composites, the assumption of
isotropy is no longer valid, since microcracks and microvoids will develop anisotropically under increased
loading. Moreover, metallic materials may show an anisotropic response due to their crystalline micro-
structure.

The modeling of inelastic isotropic material behavior is nowadays well-understood, especially because
only a few material parameters are needed to simulate either damage or plasticity (e.g. Lemaitre and
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Chaboche, 1985). The constitutive modeling of anisotropy, however, is far more difficult and the under-
standing and identification of material parameters is a sophisticated task (Carol et al., 2000b). A general
concept to model anisotropic material behavior has been proposed by Taylor (1938), who suggested to
consider the uniaxial material response on several characteristic material planes. A clear advantage of this
concept is that the material properties can be directly related to the behavior under uniaxial loading. At
first, Taylor’s ideas were only related to crystal plasticity, where plastic sliding was assumed to take place on
several slip planes, defined by the geometry of the crystalline lattice (Batdorf and Budiansky, 1949). It was
only during the last decade that the general idea of Taylor was applied to continuum damage mechanics by
Bazant and Gambarova (1984), Bazant and Prat (1988), Carol et al. (1991, 1992). The generic name
“microplane theory” was coined in order to demonstrate that the concept of defining constitutive laws on
characteristic material planes was not restricted to plasticity but could be applied to any kind of material
behavior.

Nevertheless, the thermodynamically consistent formulation of a general strategy of deriving microplane
based constitutive models is still an open issue. Most existing microplane models are mainly based on the
so-called kinematic constraint, such that the microplane strains are determined by a projection of the
overall strain tensor. In former formulations, however, the microplane stresses were related to the overall
stress tensor by the equivalence of virtual work (Bazant and Prat, 1988). These relations, were rather
motivated by phenomenological considerations, but nevertheless, they yielded excellent results when
modeling the brittle failure of concrete (Ozbolt and Bazant, 1992; Bazant and Planas, 1998). A natural
consequence of these phenomenological models is that they may result in non-symmetric material opera-
tors. Furthermore, the satisfaction of the second principle of thermodynamics cannot automatically be
guaranteed for this class of models, as demonstrated in part I of this paper (Carol et al., 2000a). There, it
was proposed that thermodynamically consistent microplane-based constitutive equations can be derived
by introducing a microscopic free Helmholtz energy on every microplane. In this second part, we will focus
on inelastic material behavior. When assuming an appropriate relation between these microscopic free
energies and the macroscopic free energy, we can evaluate the Clausius—Duhem inequality according to
Coleman’s method in the same fashion as for classical thermodynamically consistent constitutive laws. This
general approach can be applied not only to microplane elasticity but to all kinds of material behavior,
including elasticity, damage and plasticity and combinations thereof.

The paper is organized as follows: In Section 2, we briefly summarize the purely geometric relations
based on a kinematic and static constraint. After demonstrating a general concept of deriving constitutive
formulations motivated by the microplane idea in Section 3, we will include a brief discussion on the re-
lation of the macroscopic stress power to several different microscopic stress power definitions in Section 4.
Finally, we will recapitulate the application of the microplane concept to elastic material models in Section
5. The extension to inelastic material behavior will be demonstrated by the application to elasto-damage
models in Section 6 and finally to elasto-plastic models in Section 7. The different material formulations will
be examined by means of the model problems of pointwise uniaxial tension and simple shear. Due to the
underlying microplane structure, it is possible to visualize the development of anisotropy and texture
evolution in terms of the microplane components.

2. Kinematic and static constraint for one microplane
2.1. Macroscopic strain and stress tensor
To set the stage, we briefly reiterate the boundary value problem of geometrically linear continuum

mechanics. Let 4 C R™™ denote the configuration occupied by the solid with placements in R"™ denoted
by x. The boundary 0% of 4 is subdivided into disjoint parts 0% = 04, U 04, with 0%, N 0%, = (), where
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either Dirichlet or Neumann boundary conditions are prescribed. Deformations of the solid are described
by the displacement field u : # — R~ distributed body forces per unit volume are given by the vector
field f : # — R™m. The symmetric tensor fields of the macroscopic stresses and strains are introduced as
6 : B — RmMim and € : # — Rm*"im - With the assumption of small strains, the macroscopic strain
tensor € can be expressed as the symmetric part of the displacement gradient Vu.

€ =V"u. (1)
At equilibrium, the macroscopic stress tensor ¢ satisfies the balance of linear momentum

dive = —f (2)
in the domain 4 and is specified by the constitutive equation ¢ = 6 (€, g) with ¢ denoting a vector of internal

variables.

2.2. Microscopic strain and stress components

The macroscopic strain and stress tensor may be related to microscopic strain and stress components by
a kinematic or a static constraint, requiring that either the strains or the stresses of each microplane can be
derived by projections of their macroscopic counterparts, respectively.

ev=V ¢, ayv=V:o,
ep =D : €, op =D :o, (3)
er=T :¢€, or=T:o.

Herein, ey and ¢p are the volumetric and the deviatoric components of the normal strain and er denotes the
tangential strain vector, respectively. Correspondingly, the volumetric and the deviatoric projected mi-
croscopic stresses and the projected tangential stress vector are represented by Gy, 6p and 6. Note that
these projected stress components might in general be different from the constitutive stress components
derived from the constitutive equations, which will be denoted by av, op and 67 in the following. According
to Fig. 1, the strain vector ¢, and the projected stress vector 7, associated with the corresponding plane can
be expressed as projections of the strain tensor € and the stress tensor ¢ by the plane’s normal n. They are
related to the individual microplane components introduced in Eq. (3) in the following form:

~
I

ce=¢€-n=[ey+epln+er,
ia 0O-'n—= [5’\/4’6’]3}”4‘6'1‘

)

The individual projection tensors ¥V, D and T of Eq. (3) are characterized by the plane’s normal n as well as
the second-order identity tensor 1 with coefficients d;; and the symmetric part of the fourth-order identity
tensor .# with coefficients [0;x0; + 01.0,x]/2. Herein, .# can be additively decomposed into a volumetric
and a deviatoric part, .# = Sy + Fgey With L =1/31®1 and F4oy = F —1/3 13 1.

Fig. 1. Strain and stress components on one microplane.
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11,
D=n®n-11, (5)

T=n%—-—n®@nn.

W=

Note that the premultiplication with the third-order tensor 7 maps a second-order tensor to a vector in the
plane, whereas a postmultiplication with T of a vector in the plane yields a symmetric, second-order tensor.
The latter mapping of the vector in the plane v, which is orthogonal to the plane’s normal n such that
v-n =0 can be rewritten in the following simple form:

v-T=pn™ +y-nnon=[pxn™". (6)

According to Bazant and Oh (1985) and Lubarda and Krajcinovic (1993), the following integration
properties of the normal vector n can be applied to perform an analytical integration over the entire
hemisphere Q:

/dQ:2n,
Q

/n®ndQ:%“1, (7)
Q

/n®”®”®ndQ:2?n [Jvol+%fdev}-

Q

With the help of the above equations, the dyadic products of the projection tensors ¥V, D and T show the
following properties when integrated analytically over the hemisphere:

ﬁ/ Ve VdQ =4,
Q
%/QD@)DdQ:%fdev, (8)
%/ T" TdQ =314,
Q
Note that an integral orthogonality holds for the volumetric and the deviatoric projection tensors,
= / QV®DdIQ =0,

23—n/QD® Vde =0.

3. Thermodynamically consistent constitutive laws

A possible drawback of the original microplane models is that they are not derived from a potential and
consequently, do not necessarily result in symmetric material operators (Bazant and Prat, 1988). The
present contribution aims at providing a general formalism of deriving thermodynamically consistent
microplane-based constitutive laws. The macroscopic Clausius—Duhem inequality for the isothermal case

G =0:6— P20 (10)

serves as starting point for the derivation of our constitutive formulation. If we apply the following as-
sumption according to Carol et al. (2000a),
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pmac _ i / lpmi(:(LQ7 (1 1)
21 Jo
the macroscopic and the microscopic free energy Y™ and ¥™° can be related in an integral sense. Fur-
thermore, a constitutive assumption for the microscopic free energy Y™ of one plane has to be made. In its
general form, the microscopic free energy depends on the strain components ey, ep and er as well as on a set
of internal variables collected in the vector ¢,

P = lilmic(ﬁvyth,eTJI)- (12)

With the help of the kinematic constraint of Eq. (3), the evolution of the microscopic free energy can be
written as follows:

Y™ = [Voy + Dop + T - 61] 1 € — T™, (13)
whereby v, op and a1 denote the microscopic constitutive stresses
aqjmic aq,mic aqjmic
= = = 14
ov a€v op 66[) ot aET ’ ( )

which are, in general, not identical to the projected microscopic stresses defined through the static con-
straint in Eq. (3). Moreover, 2™¢ defines the microscopic dissipation as

al{,mic
Oq
with - denoting the scalar product of the order of ¢. When including the evolution of the microscopic free

energy of Eq. (13) in the integral relation (11), we obtain the evolution equation for the macroscopic free
energy as

Smic

: 3 3 i
'Pmac:E/Q[VO'v#*DO'D‘FTT'GT] dQ:é*ﬁ/ﬂ@m‘cdg_ (16)

Finally, the macroscopic version of the Clausius—-Duhem inequality (10) can be evaluated, yielding the
definition of the macroscopic stress tensor ¢ in terms of the microscopic constitutive stress components,
compare Eq. (14) of Part I (Carol et al., 2000a),

o [Voy + Dop + T" - 67] dQ. (17)

Next, in order to fulfill the macroscopic dissipation inequality
3

= [ 9"de >0 18
271:/Q ’ (18)

@mac
we will require that the microscopic energy dissipation on every plane is non-negative.
g™ > 0. (19)

This requirement is obviously stronger than the requirement posed by Eq. (18) and therefore, represents a
sufficient condition to fulfill the second principle of thermodynamics. Thus, Eq. (13) can be interpreted as a
microscopic version of the Clausius—Duhem inequality, such that

@mic = e@mic — q'/mic = 0 with e@mic = (Tvév + (iDéD “+ ot - éT. (20)

The following examples will demonstrate that the tangent operator E; relating the stress rate and the strain
rate with 6 = E, : €
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oypmie de 3 dovy dop r dot
T2 T T4 /Q { P4 TP¥qe T de da, 1)

becomes symmetric due to the derivation based on a stress potential. The numerical evaluation of the
constitutive law is described in detail in Appendix A.

4. Remarks on macroscopic and microscopic stress power

The scalar product of the macroscopic stress tensor ¢ and the strain rate tensor € yields the macroscopic
stress power 2",

P — g ;¢ (22)

In analogy to this macroscopic stress power, a microscopic stress power 2™ based on the projected stresses
can be identified as the scalar product of the projected stress vector 7, and the strain rate vector f.. With the
help of the kinematic and static constraint (4), this microscopic stress power can thus be expressed as follows:

P =1, t.=[6-€:[nDn) (23)
Its integration over the hemisphere Q
i/@mdgzi/[a-é]:[n@n]dQ:a:é (24)
2n Jq 21 Jo
as depicted in Fig. 2 yields the integral relation between the macroscopic and the microscopic stress power,
P — % /Q P™MdQ  with P™° = Gyéy + Gpéy + Gyép + Gpép + 67 - 1. (25)

Herein, we have made use of the kinematic relations (4) which define the strain vector and the projected
stress vector in terms of their microscopic components. With the help of the analytical integration formulae

Fig. 2. Evaluation of microscopic stress power on individual planes.
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derived in Eq. (9), we observe that the mixed terms of the above equation yield no contribution to the
macroscopic stress power. Thus,

%/6véDdQ:a:%/[V®D}dQ:é:O,
Q Q

(26)
Q Q
We can thus simplify Eq. (25) as
. 3 ~ i . ~ i . .
P — ﬂ /?}mlcdg with 2™ := Oyey + Op€p + 6T - éT. (27)
Q

2™ denotes a redefinition of the microscopic stress power based on the projected microscopic stresses.
Moreover, the microscopic stress power 2™¢ based on the microscopic constitutive stresses as defined in
Eq. (20), can be related to the macroscopic stress power through the macroscopic Clausius—Duhem in-
equality (10), yielding an analogous form,

3

Prac — 2— /gmicdg with ymic = GvéV + O'DéD +o7- éT. (28)
T Jo

In summary, a comparison of the three different stress powers yields the following micro-macro relations:

3 — i 3 . 3 .
gme = 2 [ pried == | pmede = | pmedq. 2
7 2n /g d 2n /g d 2n /g d )

However, it is important to notice that this relation does not imply that the three different microscopic
stress powers are identical on each plane. In general, we observe that

e@mic 7& e@mic7 ;@mic 7& e@mii e@mic 7& @mic’ (30)

which implies that the projected microscopic stresses are not necessarily identical to the constitutive mi-
croscopic stresses,

6'D§éO'D7 6-T7£6T- (31)

It should be noted, that the problem associated with decomposition of the macroscopic stress tensor into
more than three stress vectors has a non-unique solution. Consequently, there exist infinitely many mi-
croplane stress states satisfying the equilibrium equation (2). Thus, the combination of constitutive
microplane stresses defined through Eq. (14) represents only one particular solution among infinitely
many others. Nevertheless, this choice is in accordance with the macroscopic Clausius—Duhem inequality

(10).

5. Microplane elasticity

First, we would like to apply the concepts of Section 3 to microplane elasticity. To describe elastic
microplane behavior, no internal variables are necessary, i.c.

q=0. (32)

Consequently, the microscopic free energy can be phrased exclusively in terms of the microplane strain
components

leic = q/mic(ev,el),&[). (33)
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By introducing Ev and Ep as the volumetric and the deviatoric microscopic elastic moduli and Et as the
second order tensor of the tangential microscopic elastic moduli, we might express the free microscopic
energy in the following form:

Tmic = Wv(ev) + WD(GD) + WF(ET) (34)
with the microscopic contributions to the stored energy functions W, Wp and Wy given as follows:
WV = % 6va6V7 WD = % GI)EDED7 VVT = % €T " ET - €T. (35)

The evaluation of the microscopic Clausius—Duhem inequality as defined in Eq. (20) yields the definition of
the microscopic constitutive stresses as thermodynamically conjugate variables to the individual strain
components, i.e.

0 q/mic 0 lIImiC 0 leic

gy = = Ev€v, op (— = EDCD, oT ‘= = ET - €ET. (36)
aeV aeD

Moreover, the macroscopic Clausius—Duhem inequality renders the definition of the macroscopic stress
tensor in terms of the microscopic stress components, i.e.

3
o =5 | [VEvey + DEpep + T" - Er-er]dQ. (37)
Q

Eq. (37) can thus be rewritten as
c=FE": € (38)

with the macroscopic constitutive moduli defined as follows:

3
EEIZTTC/[EVV®V—|—EDD®D+TT'ET'T]dQ- (39)
Q

Remarkably, the tensor of the constitutive moduli is a symmetric tensor, since it has been derived within the
framework of thermodynamics. With the additional assumption of microplane isotropy, the tangential
strain vector and the tangential stress vector remain parallel during the entire load history. Consequently,
we can make use of the following simplification:

6T||O'T — ET = ET 1. (40)

Finally, by assuming that the constitutive moduli are independent from the orientation such that
3 3 3
Eel:Ev—/V®V+ED—/D®D+ET—/TT~TdQ, (41)
21 Jo 21 Jo 21 Jo

the integrals of Eq. (41) can be evaluated analytically with the help of the integration formulae (8), yielding
the following simplified relation:

Eel - EVJVOI + % EDJdeV + % ETjdew (42)
Herein, E® denotes the fourth-order constitutive tensor. A comparison of the above equations with
Hooke’s law of elasticity with

E' =3K.9 5+ 2GS 4oy (43)

can be used in order to identify the microscopic constitutive moduli in terms of the macroscopic bulk
modulus K and the macroscopic shear modulus G. Thus,

Ey = 3K, 1Ep +3Er = 2G. (44)
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These relations between the microscopic and macroscopic elastic moduli coincide with previous results as
given e.g. by Bazant and coworkers (1988, 1998). Note that for microplane elasticity with the special choice
of Ep = Et = 2G, we can obtain the only formulation for which the constitutive microscopic stresses are
identical to the projected stresses; thus,

Ep =Er =2G, oy=d6y, op=0dp, 61 =0T, (45)

i.e., a formulation in which the kinematic constraint and the static constraint are in place simultaneously, as
pointed out by Carol and Bazant (1997). Linear elasticity with this specific choice of Evy, Ep and Et seems to
yield the only microplane laws that lead to a model with the double constraint. Other interesting properties
of the microplane model are linked to this specific choice of the microplane elasticity moduli as well, such as
being able to derive a damage tensor independently from rheology as proposed by Carol et al. (1991) or
having expressions for the macroscopic stress and strain invariants in terms of the simple integrals of
microplane stresses and strains.

6. Microplane damage

In this Section, we will evaluate the constitutive formulation assuming that damage is the dominating
dissipative mechanism on the microplane. Following the ideas of Bazant and Prat (1988), the evolution of
damage is assumed to be different for each component. Consequently, three individual damage parameters
have to be introduced. Thus,

q = {dv,dD,dT} with Ogdv,dD,dT < 1. (46)

The individual damage parameters can be understood as the effective surface density of microdefects
(Lemaitre, 1992), whereby dy and dp can be associated with the direction normal to the plane and dr is
associated to the in-plane damage. The microscopic free energy can thus be written in terms of the strain
components and the damage parameters,

'Pmic _ .i,mic (€V7 €D, ET,dv7dDadT)- (47)

As in classical continuum damage theories, the values of the damage variables grow from zero to one with
increasing loading. They can be interpreted as a reduction of the corresponding elastic properties, yielding
the following definition of the microscopic free energy:

P — 1 — dy| Wy (ey) + [1 — dp|Wo(ep) + [1 — dr|Wr(er). (48)

Herein, W4, Wp and Wt denote the microscopic stored energy functions according to Eq. (35). Again, the
microscopic version of the Clausius—Duhem inequality yields the definition of the microscopic constitutive
stresses as thermodynamically conjugate variables to the corresponding strain components. That is,

oy = a'alt:: = Ef'ev, ES = [1 — dy]Ey,
op = SSZZ'C = Efep, Epy = [1 — dp]Ep, (49)
or = ag/e‘: = EY -er, EY = [1 - di]Er.

Furthermore, the microscopic dissipation inequality
@mic = YV dv + YD dD -+ YT dT with gmic = 0 (50)

renders the definitions of the energy release rates Yy, Yp and Yr as the thermodynamically conjugate
variables to the damage parameters,
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0 leiC 0 q/mic 0 lI/mic
Ywi=——=W Yopi=——=W Yri=— = Wr. 51
\'% Gd\/ \'Z] D ad[) D> T @dT T ( )

The damage loading functions are introduced in the following form:

@V(Yv,d\/) = ¢V(YV) - dv S 07

@D(YDydD) = ¢D(YD) —dD<07 (52)

¢T(YT7dT) = ¢T(YT) — dT g 0.
From the evaluation of the constrained optimization problem arising from the dissipation inequality (50) in
combination with the postulate of maximum dissipation under the constraints (52), we gain the evolution
laws for the damage parameters

dy = &y Oy, Py, dp = Kp Oy, Ppy, dr = k1 Oy, by (53)

as well as the Kuhn-Tucker loading—unloading conditions, i.e.

Dy <0, kv 20, Pyiry =0,
Pp <0, kp =20, Ppxp =0, (54)
Br<0, fr>0, b icy = 0.

The corresponding consistency conditions can be expressed as follows:
Dyly =0,  Ppip =0,  Pricp =0. (55)

Their evaluation according to Simo and Ju (1987) yields the evolution equations for the history parameters
Ky, Kp and KT,

ky=Y >0, #kp=1¥p>=0  kr=7¥>=0. (56)
Consequently, the history parameters can be expressed in the following closed form:

ky = max (Yy(s), k%), kp = max (Yp(s), kD), kr = max (Yr(s), x5), (57)
—00<8s<T —00<8s<T —00<8s<T

whereby «V, k) and '} denote individual damage threshold values. Moreover, the damage evolution laws
can be simplified in the following form:

dv = ¢y(kv),  dp=d¢p(kp),  dr= ¢g(xr). (58)

Finally, the macroscopic Clausius—Duhem inequality (10) can be evaluated, yielding the macroscopic stress
tensor ¢ as thermodynamically conjugate variable to the macroscopic strain tensor e,

o=— =E%¢€ (59)

Herein, Eid denotes the fourth order elasticity secant tensor modified due to damage. It can be expressed in
terms of the individual elasticity moduli £%9, £% and Eer modified due to damage and integrated over the
hemisphere, i.c.

3
E:dzﬂ/[Ei,dVQQ V+EYD® D+ T' - EY - T|dQ. (60)
Q
The linearization of Eq. (59) yields the elasto-damage tangent operator Efd,

- — VeVt ———=D D+ —T - — - T|dQ. (61)
2n Jo

ped _ ped _ 3 Oy oy dpp  op O0pr .1 61 R 07
' oy [1 — dy]? 0Kp [1 — dp) orr 1 —di]?
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Table 1

Constitutive equations of microplane damage
Free energy P = ?’"f““(‘[’w Vo, P1) =2 [, [PV° + PRC + Pr€]de
Volumetric Py =Py (ev,dy) = [1 —dv] Wy
Deviatoric q/;g? = ‘}’gfc(eD,dD) = [l —dp] "o
Tangential YR = Y€ (er,dr) = [l — dr] W1
Stresses 6 =0¥Y"™ /de = £ [, [Vov + Dop + T or|dQ
Volumetric oy = O'I/““_“/aev =[1 —dy] Evey
Deviatoric op = a‘P"‘_'C /%ep = [1 — dp| Epep
Tangential or = 0¥Y™/0er = [l —dr| E1 - €r
Energy release rates _
Volumetric Yv = 76'I’mf° /0dy = Wy
Deviatoric Yp = -0 lPm_‘C /0dp = Wp
Tangential Yr = —0¥Y"™° /ody = Wi
Loading functions
Volumetric by = py(Yy) —dy <0
Deviatoric &p = ¢p(¥p) —dp <0
Tangential &1 = pp(Yr) —dr <0
Kuhn—Tucker conditions
Volumetric F.C\/ = 0 ¢V < 0 F‘C\/ (pv =0 kv ¢v =0
Deviatoric K'D = 0 qu < 0 kD qu =0 K'D.QDD =0
Tangential }tT =0 ¢T < 0 kT ®T =0 I%T ¢T =0
Evolution laws )
Volumetric q’v =Ky Oppy Ky =Yy
Deviatoric q’D =kp Oy, ¢p Kp=1p
Tangential dr = Kt O Kt =Yr

The macroscopic dissipation inequality 2™ > 0 is guaranteed, since the microscopic dissipation inequality
is fulfilled in accordance with Eq. (50). The constitutive equations of microplane damage are summarized in
Table 1.

Remark: According to the original microplane models proposed by Bazant and coworkers, we have
introduced independent damage variables for the volumetric, the deviatoric and the tangential behavior. If,
in contrast to this, only one damage variable d is introduced, the microscopic free energy is given as follows:

leiC = 'jjmic(Gv,GD,ET,d) = [1 — d] [Wv(EV) + WD(GD) + WF(ET)] (62)
Moreover, we can define a damage-loading function of the following form:
P .= ¢(Y) - dé 0 with Y := Wv(ﬁv) + WD(GD) + WT(ET). (63)

With the argumentation of Simo and Ju (1987) and the evaluation of the macroscopic constitutive equa-
tions as described in Section 3, we obtain the following definition of the macroscopic stress tensor o:

6=E": e with E:d:%/[l—d}[EvV@) V+E,DRD+T' - Er- T]dQ. (64)
Q

The elasto-damage tangent operator for the microplane damage formulation in terms of only one damage
variable is then given as follows:

3 0
Efd:E:d_E/ %[Vﬂv+DGD+TT'GT] ®[GvV—|—UDD+O’T'T]/[1 —d]de (65)
Q
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7. Microplane plasticity

We will now establish the situation for which plastic sliding is the dominant dissipative mechanism on
the microplane. Based on the assumption of small strains, the macroscopic strain tensor can be additively
decomposed into an elastic and a plastic part,

€:=¢€" + €. (66)
Consequently, according to the kinematic constraint, the microplane strain components can be expressed
by the same additive decomposition,

€y = E% + 61\)/, €p = EleD + EpD, €T = 6?1- + E%. (67)

In the most general form, the vector of internal variables ¢ consists of the three plastic strain components
ev, eb and €h and a set of internal variables k, describing the hardening behavior. For sake of transparency,
we will assume that the influence of kinematic hardening is negligible. We thus introduce one single

hardening variable x for each plane, describing the isotropic hardening behavior,
q = {eV, ed, €x, k}. (68)

Accordingly, the microscopic free energy can be defined in terms of the total strains, the plastic strains and
the hardening variable,

Pmic — Pmie (o e, e, €b, €D €l k). (69)
Based on the definition of the elastic free energy given by Eq. (34), the free energy for microplane plasticity
can be expressed as follows:

leiC _ WV(GV _ 6%) + WD(GD — 6%) + WF(GT — e%) —|—/O ¢(K)dl€ (70)

Again, Wy, Wp and Wt define the microscopic stored energy functions according to Eq. (35). The additional
term fOK ¢(x)di accounts for the isotropic hardening behavior. By evaluating the microscopic Clausius—
Duhem inequality, we obtain the definition of the microscopic constitutive stresses as thermodynamically
conjugate values to the elastic strains, i.e.

oy = = Evﬁv, op = = EDGD; oT ‘= = ET * €7 (71)

Moreover, the microscopic dissipation inequality poses the following restrictions on the evolution of the
plastic strains and the internal variable:

G™ = gyé + opéd + o7 - € — P with Z™° > 0. (72)

The yield function @ can be introduced in terms of the equivalent stress ¢ and the yield stress ¢,

® = ¢(ov,0p,01) — P() <0, (73)
whereby the equivalent stress ¢ is a function of the individual microscopic constitutive stresses, with
0¢ Gl Gl
= — = — = 74
Vv aO'V 9 VD aO'D ) VT 60‘T ( )

By solving the constrained optimization problem arising from the dissipation inequality (73) in combina-
tion with the postulate of maximum dissipation under constraint (73), we obtain the following evolution
equations for the plastic strains and the internal variable x:

65/ = N).)VV7 Er]’) = ?vDa er}‘ = ?VT7 K = V (75)
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Furthermore, the Kuhn-Tucker loading unloading conditions and the consistency condition are expressed
as follows:

@ <0, 5 >0, @y =0, @y = 0. (76)
The evolution of the yield stress renders hardening modulus H,

; . 0

¢ =Hk with H= ai). (77)

This formulation corresponds to a Koiter type hardening. Note that this class of hardening laws does not
account for an interaction of the hardening behavior of the different microplanes. In the context of crystal
plasticity, however, this interaction introduced through latent-hardening terms, cannot be neglected, since
its influence is nearly of the same order as the influence of the self-hardening term considered here. The
different types of hardening laws are discussed in detail by Asaro (1983).

The evaluation of the consistency condition (76) (fourth equation) yields the definition for the plastic
multiplier 7,

7 =3wWEvV +vpEpD +vr-Er-T|: € (78)
with

h:=vwEyvy +vpEpv+vr-Er-vr+H. (79)
Consequently, we obtain the following expression for the elasto-plastic tangent operator E?

6=FE":¢€ (80)
with

E® = E* — % /Q % [VEyvy + DEpvp + T" - Et - vi| @ [vy EvV +vpEpD + vy - Ey - T]dQ. (81)

Remarkably, the structure of the elasto-plastic tangent operator is very similar to the elasto-damage tan-
gent operator for the formulation with only one damage variable defined in Eq. (65). The constitutive
equations of microplane plasticity are summarized in Table 2.

Table 2
Constitutive equations of microplane plasticity
Free energy P = fpmac (pmicy — (3 /27) Jo P dQ
Microscopic P = Wy (&) + Wn(eh) + Mr(es) + [y ¢ di
Stresses 6 =09 /e = (3/2n) [, [Voy + Dop + TT - 67]dQ
Volumetric oy = 8‘1’"’{“ /Oey = Evey,
Deviatoric op = 6?’“‘_” /Oep = Epe,
Tangential or =0¥Y™/0er = Et - €
Yield stress ¢ =0¥" ok = Hi
Loading function @ = ¢ (oy,0p,01) — ¢ (k) <0
Kuhn—Tucker conditions 720 &<0 =0 =0
Evolution law K=7

Plastic strains

Volumetric & = 70¢y/doy
Deviatoric éh =7 0¢p/dop
Tangential € =7 0¢r/dar




2946 E. Kuhl et al. | International Journal of Solids and Structures 38 (2001) 2933-2952

8. Examples

In the following, we will investigate the spatial distribution of the material properties for the model
problem of ‘“‘uniaxial tension” and ‘“‘simple shear”” under plane strain conditions. The elastic microplane
moduli are chosen in accordance with Section 5 such that the overall Young’s modulus is equal to
E = 30000 Nmm~2 and Poisson’s ratio takes a value of v = 0.2. Consequently, the volumetric modulus is
equal to Ey = 50000 Nmm 2 according to Eq. (44). We assume that for the case of microplane damage, the
deviatoric and the tangential microplane moduli are weighted equally (Ep = 25000 Nmm~2 and
Er = 25000 Nmm~?), whereas for the examples of microplane plasticity, we will set the deviatoric modulus
equal to zero (Ep = 0 Nmm~? and Et = 41667 Nmm~?2). For the uniaxial tension test as well as for the
simple shear problem, a plane strain situation is assumed.

8.1. Microplane elasticity

First, the spatial distribution of the driving forces for microplane damage and microplane plasticity will
be elaborated assuming an initially elastic material behavior. Fig. 3(a)—(c) depict the distribution of the
driving forces for microplane damage, the microscopic stored energy components

Wy = levEvey, Wp = YepEpep, Wr =ler - Ey - er (82)

for the case of uniaxial tension. For the analysis, the numerical integration over the hemisphere has been
performed with 7y, = 21 microplanes. In contrast to the microscopic volumetric stored energy depicted in
Fig. 3(a), the microscopic deviatoric and tangential stored energies of Fig. 3(b) and (c) are not distributed
uniformly in space. Fig. 3(d) shows the distribution of the equivalent stress ¢ as driving force for micro-
plane plasticity. For sake of transparency, we will assume that the equivalent stress is independent of the
hydrostatic pressure, such that

¢(ov,0p,01) = /|07 - O7]. (83)

Fig. 4 depict the distribution of the microscopic stored energy components and the equivalent stress for the
model example of simple shear. Obviously, the results strongly depend on the type of loading. Conse-

(a) (b) (c) (d)
W [N/ mmz] P [N/ mmz]

0.00000 0.0
0.00156
0.00313
0.00467
0.00625
0.00781
0.00938
0.01094
0.01250

2.5
5.0
Wy Wp Wr ¢

7.5
10.0
12.5
15.0
17.5
20.0

Fig. 3. Uniaxial tension — elastic microplane properties.
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(a) (b) () (d)

W [N/mm2] P [N/mmz]
0.00000 0.0
0.00156 2.5
0.00313 5.0
0.00467 7.5
0.00625 10.0
0.00781 12.5
0.00938 15.0
0.01094 17.5
0.01250 20.0

Wy Wp Wr 0

Fig. 4. Simple shear — elastic microplane properties.

quently, a completely different distribution of the elastic properties can be observed for the two different
loading situations. For example, the tangential energy Wr for the simple shear test (Fig. 4(c)) takes max-
imum values at the upper, the lower, the left and the right microplane, whereas for the uniaxial tension test
(Fig. 3(c)), these microplanes exhibit no tangential straining at all. Note that for the case of simple shear,
the volumetric stored energy is equal to zero since for that type of loading all strain components except for
the shear strain ¢, are equal to zero.

8.2. Microplane damage

The subsequent analysis is based on a damage formulation with three different damage moduli as derived
in Section 6. The evolution of the damage moduli is assumed to be of an exponential type with

d(k) =1—exp [— [g]p}. (84)

Accordingly, two additional parameters are introduced for each component. They are chosen as ay =
0.009, py =0.5, ap = 0.0125, pp = 0.4, ar =0.032 and pr = 0.5, respectively. The load-displacement
curves for the uniaxial tension as well as for the simple shear example are depicted in Fig. 5. Figs. 6 and 7
show the spatial development of the deviatoric and the tangential damage variable for the uniaxial tension
test. Each series of four figures corresponds to the load steps indicated in the load—displacement diagram.

F [kN] uniaxial tension F [kN] simple shear
2.0 1.00 wF{J @)

15 0.75

0.50

0.5 0.25

0.0 0.00

0.00 0.005 0.01 0.015 0.02 u[cm] 0.00 0.01 0.02 0.03 0.04 €[%%]

Fig. 5. Load-displacement curves for microplane damage.
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D@

Fig. 6. Uniaxial tension — evolution of deviatoric damage dp.

000

Fig. 7. Uniaxial tension — evolution of tangential damage dr.

dp
0.000
0.125
0.250
0.375
0.500
0.675
0.750
0.875
1.000

dr
0.000
0.125

0.250
0.375
0.500
0.675
0.750
0.875
1.000

During the loading history, the formation of specific distribution patterns can be observed. Deviatoric
damage, for example, takes maximum values in the left and right microplane which are situated normal to
the loading axis, compare Fig. 6. The tangential damage variable depicted in Fig. 7 takes a distribution
which is almost inverse to the one of deviatoric damage. The development of the spatial distribution of the
damage moduli for the simple shear test is given in Figs. 8 and 9. The same tendencies towards a loading
specific texture evolution can be observed.

The final distribution of the microscopic energies at the end of the loading history can give further insight
into the loading mechanisms taking place on the microplanes. The microscopic energies Wy and Wi for the
two different loading scenarios are shown in Fig. 10(a)—(d). Different strain patterns have developed under
the different loading situations. Furthermore, the distinct textures can be understood as a result of various
loading and unloading situations on the different microplanes. As soon as the mostly loaded microplanes
locally enter the softening regime, the strains tend to concentrate in only a few microplanes whereas other
microplanes exhibit unloading. This phenomenon of “microscopic localization™ is characteristic for mi-
croplane based models. It represents an additional microscopic instability, which is superposed to the
macroscopic instability caused by an overall softening behavior. However, the microscopic localization can
take place long before the overall ultimate load is reached. If too many microplanes unload simultaneously,
the undefined loading situation might even lead to a loss of convergence of the overall calculation.

8.3. Microplane plasticity

Microplane plasticity will be analyzed for the loading function introduced in Section 8.1. For sake of
simplicity, we will assume a linear softening relation defined by the following relation

¢(k) = oy + Hx (85)

with the initial yield stress of oy = 50 Nmm~2 and a softening modulus # = —2000 N'mm~2. The load—
displacement diagrams corresponding to the two loading cases are depicted in Fig. 11. The development of
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0.000
0.125
0.250
0.375
0.500
0.675
0.750
0.875
1.000

Fig. 8. Simple shear — evolution of deviatoric damage dp.

gl 1

Fig. 9. Simple shear — evolution of tangential damage dr.

(a) (b) ()

uniaxial tension Wp uniaxial tension Wt simple shear Wp simple shear W

dr
0.000
0.125
0.250
0.375
0.500
0.675
0.750
0.875
1.000

Fig. 10. Energy distribution at final state of loading.

the distribution of the plastic multiplier y for the uniaxial tension and the simple shear case is demonstrated
in Figs. 12 and 13. Again, a tendency towards texture evolution can be observed. Under uniaxial tension,
the plastic strains tend to concentrate in the planes situated under an angle of about 45° towards the loading
axis in the loading plane. For the simple shear case, however, plastic straining takes maximum values in the
upper, lower, left and right microplane. Nevertheless, the texture evolution for this particular example of
microplane plasticity seems to be less pronounced than in the previous example of microplane damage. The
loading situation is defined in a much stricter sense, since only one loading function was introduced in
contrast to the microplane damage model. Consequently, microscopic unloading and reloading does not
take place as frequently as in the previous example.
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F [kN] uniaxial tension F [kN] simple shear
8.0 2.0
6.0 L5
4.0 1.0
u, F uF @)
—
2.0 0.5
—
0.0 0.0
0.00 0.005 0.01 0.015 0.02 u[cm] 00 0.01 0.2 003 0.40u[cm]

Fig. 11. Load-displacement curves for microplane plasticity.

Y [“ool

0.000
0.625
1.250
1.875
2.500
3.125
3.750
4.375
5.000

Fig. 12. Uniaxial tension — evolution of plastic multiplier y.

Y [*/oo]

0.000
0.625
1.250
1.875
2.500
3.125
3.750
4.375
5.000

Fig. 13. Simple shear — evolution of plastic multiplier 7.

9. Conclusion

It has been the primary objective of this contribution to provide a general, thermodynamically consistent
approach to derive constitutive laws within the concept of the microplane theory. Thereby, we aimed at a
formulation which allows for the description of arbitrary material behavior at the micro and macroscales.
The main assumption for these developments was the postulate of microscopic free energies on the indi-
vidual microplanes, which could be related to the macroscopic free energy in an integral sense as was
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proposed in the companion Part I to this paper. A main theoretical result is that macroscopic dissipation
may be expressed as the integral of dissipation on each microplane. Thereby, the microplane constitutive
laws were chosen such that the energy dissipation on each plane is guaranteed to be non-negative. Con-
sequently, the second principle of thermodynamics is automatically satisfied for the macroscopic equations.
Likewise, the corresponding macroscopic constitutive relations followed by integration over the hemi-
sphere.

As an illustration, the generic concept has been applied to model elasticity, elasto-damage and elasto-
plasticity. The results have been investigated for the examples of pointwise uniaxial tension and simple
shear. Thereby, we analyzed the pointwise texture evolution or rather microscopic localization on the
activated microplanes. In summary, we believe that this contribution clarified issues of how to formulate in
a straightforward and thermodynamically admissible way a wide class of microplane based constitutive
models.
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Appendix A

In Section 5, an isotropic material behavior was assumed such that the integral expression of Eq. (11)
could be evaluated analytically. For the general anisotropic material behavior, however, this analytical
evaluation becomes nearly impossible. The integral expressions resulting from the constitutive equations
can be evaluated by applying a numerical quadrature technique. The integral over all possible directions in
space is thus replaced by a weighted sum of the integrand evaluated at a finite number ny,, of discrete
directions. In the context of the microplane theory, each of these directions can be associated with one
microplane on which the planewise constitutive laws are evaluated. The numerical integration will be
demonstrated for the macroscopic stress tensor ¢ as a typical representative of the integral structures. Its
definition based on the general definition of the overall stress tensor (17) can thus be approximated as
follows:

Nmp 0 lIImiC 1 0 leic 1 0 leic 1
~ V! D' . ——— W
’ ; { Oel, * el + 0€k

Herein, Y™/ is the microscopic free energy associated with the /th material direction and w' are the
corresponding weight coefficients. Furthermore, €}, €/, and €. denote the strain components of the /th plane
and V', D' and T’ are the related projection tensors which can be expressed in terms of the plane’s nor-
mal n’. Accordingly, the definitions of the other integral structures can be evaluated in an analogous
fashion.

The number of microplanes #,, determines the order of accuracy of the approximation. Bazant and Oh
(1985, 1986) have analyzed several integration techniques based on a mathematical analysis by Stroud
(1971). According to their experience, 42 microplanes yield a sufficiently accurate approximation. Due to
symmetry conditions, it is sufficient to approximate only one hemisphere, resulting in formulations with 21
integration points. The corresponding geometry for which the microplanes are situated as tangential planes
to the vertices and the edges of a regular icosahedron is depicted in Fig. 14.
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Fig. 14. Numerical integration with ny, = 21 integration points per hemisphere.
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